Updating and estimating a social accounting matrix

Rated 4.61/5 based on 856 customer reviews

The traditional RAS approach requires that we start with a consistent SAM for a particular period and “update” it for a later period given new information on row and column sums.This paper extends the RAS method by proposing a flexible entropy difference approach to estimating a consistent SAM starting from inconsistent data estimated with error, a common experience in many countries.Since the input-output accounts are contained within the SAM framework, updating an input-output table can be viewed as a special case of the general SAM estimation problem.The paper presents the structure of a SAM and a mathematical description of the estimation problem. Vos (1991): The Social Accounting Framework for Development: Concepts, Construction and Applications. BBS (2001): National Accounts Statistics: Gross Domestic Product, 2000-2001. BBS (2000): Preliminary Estimates of Gross Domestic Products, 1999-2000 and Final Estimate of Gross Domestic Product, 1998-99. IOM (2005): Dynamics of Remittance Utilization in Bangladesh. 5, International Organization for Migration, Geneva.

This work involves the construction of the 2013 Social Accounting Matrix for the D. Given the nature of these data, we have resorted to the bottom-up approach to the development of this SAM and methods of RAS and cross-entropy for its balancing. 1997, «Entropy optimisation methods for the estimation of tables», Classification, Data Analysis and Data Highways, p. 1981, «An iterative row-action method for interval convex programming», Journal of Optimization theory and Applications, vol. 2001, La politique économique du développement et les modèles d’équilibre général : calculable, PUM. Centre Inter-universitaire sur le Risque, les Politiques Economiques et l’Emploi, Université Laval, Quebec. 2002, «Balancing a social accounting matrix», Laval : Centre de Recherche en Économie et Finances Appliquées (CREFA) Université Laval. 1996, Maximum entropy econometrics : Robust estimation with limited data, Wiley New York.

Leave a Reply